
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2005; 48:349–366
Published online 21 January 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/�d.895

2D thermal=isothermal incompressible viscous �ows

Alfredo Nicol�as1;∗;† and Blanca Berm�udez2

1Depto. Matem�aticas; 3er. Piso Ed. AT-Diego Bricio; UAM-Iztapalapa; 09340 M�exico D.F.; M�exico
2Facultad de C. de la Computaci�on; BUAP; Pue.; M�exico

SUMMARY

2D thermal and isothermal time-dependent incompressible viscous �ows are presented in rectangu-
lar domains governed by the Boussinesq approximation and Navier–Stokes equations in the stream
function–vorticity formulation. The results are obtained with a simple numerical scheme based on a
�xed point iterative process applied to the non-linear elliptic systems that result after a second-order
time discretization. The iterative process leads to the solution of uncoupled, well-conditioned, symmet-
ric linear elliptic problems. Thermal and isothermal examples are associated with the unregularized,
driven cavity problem and correspond to several aspect ratios of the cavity. Some results are presented
as validation examples and others, to the best of our knowledge, are reported for the �rst time. The
parameters involved in the numerical experiments are the Reynolds number Re, the Grashof number Gr
and the aspect ratio. All the results shown correspond to steady state �ows obtained from the unsteady
problem. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: �xed point iterative process; Reynolds and Grashof numbers; mixed convection;
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1. INTRODUCTION

In this paper, 2D mixed convection and isothermal incompressible viscous �ows are presented
in rectangular domains governed by the Boussinesq approximation and Navier–Stokes equa-
tions; the governing equations are in terms of the stream function–vorticity variables. The
results are obtained with a simple numerical scheme based on a �xed point iterative process
applied to the non-linear systems that result after a convenient second-order time discretization
is made. The iterative process leads to the solution of uncoupled, well-conditioned, symmetric
linear elliptic problems for which, as is well-known, very e�cient solvers exist regardless of
the space discretization.
The numerical scheme is an extension of one developed for isothermal problems reported

in Reference [1]. Because of the simplicity of the scheme and the good conditioning of the
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350 A. NICOL �AS AND B. BERM �UDEZ

resultant algebraic linear systems, no upwinding ingredient is used; �ne meshes can be handled
without too much computational e�ort in medium computers when convection dominance or
large force terms are involved, and an iterative method like cyclic reduction is used.
The numerical experiments take place in rectangular domains associated with the well-

known, unregularized driven cavity problem which implies re-circulation phenomena because
of its velocity boundary condition. The �ow parameters involved are the Reynolds number Re,
the Grashof number Gr and the aspect ratio of the domain (ratio of the height to the width).
In this regard, results with di�erent aspect ratios are presented for isothermal �ows with
Reynolds number Re=1000 and non-isothermal mixed convection ones with Reynolds number
4006Re63000 and Grashof numbers 1026Gr6107. Some of the results are presented as
validation of the method, while others are new results which, to our knowledge, are reported
for the �rst time. Our aim is to describe the nature of the �ows, mainly on the new ones,
rather than to analyse the numerical algorithm.
However, to support the validation of the results, mesh size and time-step independence

studies are carried out. Computations are made on a �xed mesh size with di�erent time steps,
on di�erent mesh sizes with �xed time step, and a combination of both (mesh size and time
step) since �ner meshes lead necessarily to a reduction in the time step due to stability
requirements, an issue not discussed here. The discrepancies are measured in terms of the
relative L∞ discrete norm and the max=min values of the stream function  .
The new results show that the �ows have a strong dependence on the aspect ratio, the

Reynolds number Re and the Grashof number Gr: the number of cells for the streamlines
increases as either the aspect ratio, Re, or Gr increases, and the isotherms tend to spread into
the whole cavity, at least for the contour values considered; the �nal time where the steady
state is reached increases also according to this dependence.
By de�nition, a steady state (or stationary) �ow is a �ow where the velocity u (equivalently,

the vorticity ! in stream function–vorticity variables) is independent of time at any spatial
point occupied by the �uid [2, 3] implying no contribution of the time derivative in the
momentum equations. By solving unsteady problems, one has to decide the goal to reach. In
this work, all the results shown correspond to steady state �ows obtained from the unsteady
problem, which means that the �ows are the converged asymptotic steady state, independent
of time, obtained as time t approaches +∞ (large time, in practice). That is, at this stage,
no time-dependent �ow is under study since no su�ciently large Reynolds number Re is
considered [4].
Previous work, reported partially in Reference [5], has already been done to validate the

scheme for natural convection �ows in a unit square cavity. For natural convection �ows the
cavity is bounded by rigid and �xed walls, whereas for mixed convection the top wall is in
motion (implied by the driven cavity problem). As a consequence, the latter �ows are more
di�cult to handle; the results shown here illustrate the robustness of the scheme.
It is known that the limitation of the stream function–vorticity formulation makes it less de-

sirable than the generality of the primitive variables formulation. However, recent experiments
in rectangular cavities with the numerical scheme in Reference [6] in primitive variables, even
though the meshes are coarser due to an upwinding stabilization process, show that the sim-
plicity of the method employed here, in stream function–vorticity variables, has a superior
e�ciency.
Hereafter, the paper is organized in sections as follows: Section 2—Continuous Problem;

Section 3—Numerical Scheme; Section 4—Numerical results; Section 5—Conclusions.
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2D INCOMPRESSIBLE VISCOUS FLOWS 351

2. CONTINUOUS PROBLEM

Let � ⊂ RN (N =2; 3) be the region of the unsteady �ow of a non-isothermal incompressible
viscous �uid, and � its boundary. Under the well-known Boussinesq approximation, this kind
of time-dependent �ow is governed by the non-dimensional equations given by

ut − 1
Re
�u+∇p+ (u · ∇)u= Gr

Re2
�e in �; t¿0 (1a)

∇ · u=0 in �; t¿0 (1b)

�t − 1
RePr

��+ u · ∇�=0 in �; t¿0 (1c)

where u, p and � are the velocity, pressure and temperature of the �ow, respectively. The
parameters Re, Gr and Pr are the Reynolds, Grashof and Prandtl numbers, respectively, and
e is the unit vector in the direction of the gravitational force.

Remark
The pure isothermal case, known as the Navier–Stokes equations, is a particular case of
(1a)–(1c): there is no coupling with the thermal energy equation (1c) and only the momentum
equation (1a) and the incompressibility constraint (1b) are considered, and the right-hand
side in (1a) involves a concentration of external forces f independent of �, and therefore,
independent of the parameters Gr and Re.

The momentum equation (1a) and the temperature equation (1c) should be supplemented
with appropriate initial conditions

u(x; 0) = u0(x) in � (∇ · u0 = 0) (2a)

�(x; 0) = �0(x) in � (2b)

and boundary conditions, say for instance

u= f1 on �; t¿0
(∫

�
f1 · n d�=0

)
(3a)

B�=0 on �; t¿0 (3b)

where B is a boundary operator for �, which can involve Dirichlet, Neumann or mixed
boundary conditions.
Restricting the domain for equations (1a)–(1c) to the 2D case, taking the curl on both

sides of (1a) and taking into account the relations

u1 =
@ 
@y

; u2 = − @ 
@x

(4)
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352 A. NICOL �AS AND B. BERM �UDEZ

where (u1; u2)= u and  is the stream function, the component in the k=(0; 0; 1) direction
gives the system of scalar equations

� =−! in �; t¿0 (5a)

!t − ��!+ u · ∇!=
Gr

Re2
@�
@x

in �; t¿0 (5b)

�t − 1
RePr

��+ u · ∇�=0 in �; t¿0 (5c)

where 1=Re has been replaced by the viscosity parameter �, and ! is the vorticity, which,
from !k=∇ × u= −� k, is given by

!=
@u2
@x

− @u1
@y

(6)

System (5a)–(5c) are the corresponding Boussinesq equations in stream function–
vorticity variables associated with the ones in primitive variables (1a)–(1c). Analogous to the
primitive variables formulation, if the right-hand side of (5b) is given by a function of
external forces f , independent of �, and there is no coupling with the thermal energy
equation (5c), the corresponding system (5a)–(5b) gives the Navier–Stokes equations in
stream function–vorticity variables. It should be noted that because of the relations in (4)
the incompressibility condition (1b) is satis�ed automatically in �, which is a
signi�cant advantage. The disadvantage is that there is no boundary condition given
for vorticity. As mentioned in References [7, 8],  is over-determined on the
boundary ( @ @n |� is also known) but no boundary condition is given for !. Actually, in
Reference [7] a procedure is given to obtain the boundary condition for ! in general
domains.
This work is only concerned with 2D rectangular domains, and therefore Equations

(5a)–(5c) are set in the domain �= (0; a)× (0; b) with a, b¿0. The motion boundary con-
dition, in terms of the primitive variable u, is de�ned by: (a) Isothermal case: u=(1; 0) at
the moving boundary (the top one y= b) and u=(0; 0) elsewhere; as is well-known, this
kind of boundary condition corresponds to the unregularized, driven cavity problem, mostly
given for the unit square but in Reference [9], for instance, where a cavity of aspect ratio 2
is considered. (b) Mixed convection: the same as in the isothermal case for velocity and the
boundary condition for the temperature � is still given implicitly by the operator B in (3b);
it will be given explicitly in Section 4.
A brief discussion for the translation of the boundary condition in terms of the velocity

primitive variable u to the  –! variables follows; the discussion is given for the isothermal
case only since this situation trivially implies the corresponding one for mixed convection.
Following Reference [1] (see also Reference [9]), by (4),  is a constant function on rigid
and �xed walls; at the moving wall y= b, a constant function for  is also obtained, then
 =0 is chosen on �. By Taylor expansion of (5a) on the boundary, with hx and hy the space
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2D INCOMPRESSIBLE VISCOUS FLOWS 353

steps, one obtains

!(0; y; t)=− 1
2h2x
[8 (hx; y; t)−  (2hx; y; t)] +O(h2x)

!(a; y; t)=− 1
2h2x
[8 (a − hx; y; t)−  (a − 2hx; y; t)] +O(h2x)

!(x; 0; t)=− 1
2h2y

[8 (x; hy; t)−  (x; 2hy; t)] +O(h2y)

!(x; b; t)=− 1
2h2y

[8 (x; b − hy; t)−  (x; b − 2hy; t)]− 3
hy
+O(h2y)

(7)

In addition, !(x; 0)=!0(x) and �(x; 0)= �0(x) denote the initial conditions for the vorticity
and for the temperature, respectively; the initial vorticity, by (6) has to satisfy !0 = @u02=@x−
@u01=@y if u0=(u01; u02) is the initial velocity.

3. NUMERICAL SCHEME

About time discretization, !t and �t appearing in the (5b) and in (5c), respectively, are
approximated by the second-order scheme

ft(x; (n+ 1)�t)=
3fn+1 − 4fn + fn−1

2�t
; n¿1; x �� (8)

where �t denotes the time step and fr ≡ f(x; r�t) for a smooth enough function f.
The resulting time discretization system reads

� n+1=−!n+1 in �

�!n+1 − ��!n+1 + un+1 · ∇!n+1=
Gr

Re2
@�n+1

@x
+ f!; n¿1 in �

��n+1 − 1
RePr

��n+1 + un+1 · ∇�n+1=f�; n¿1 in �

(9)

where �=3=2�t, f!=(4!n −!n−1)=2�t, f�=(4�n − �n−1)=2�t, and the components u1 and
u2 of u, in terms of  , are given by (4).
Then, at each time step, a non-linear system of elliptic equations of the following form has

to be solved:

� =−! in �;  =0 on �

�! − ��!+ u · ∇!=
Gr

Re2
@�
@x
+ f! in �; !=!bc on �

�� − 1
RePr

��+ u · ∇�=f� in �; B�=0 on �

(10)

where !bc denotes the boundary condition for ! given by (7). To obtain ( 1; !1; �1) in (9)
various second-order strategies can be used by applying an Euler �rst-order approximation
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354 A. NICOL �AS AND B. BERM �UDEZ

for the time derivative. For instance: (1) through a sequence of solutions with a smaller
time step or (2) computing ( 1; !1; �1) with �t, then, ( 2; !2; �2) with �t=2, and then taking
( 1; !1; �1)=2( 2; !2; �2)− ( 1; !1; �1). In either situation, a system of the form (10) is also
obtained.
Taking into account that the elliptic system (10), in addition to being non-linear, is of

the non-potential (or transport) type, a �xed point iterative process is used for the solution.
This process is similar to one applied previously to mixed convection problems in primitive
variables [6]. A distinctive aspect here is that the iterative process is extended up to the
boundary to handle the ! boundary conditions given implicitly by unknown interior values
of  in (7).
Denoting

R!(!;  )≡ �! − ��!+ u · ∇! − Gr

Re2
@�
@x

− f! in �

R�(�;  )≡ �� − ���+ u · ∇� − f� in �

where �=1=RePr. System (10) is equivalent to

� =−! in �;  =0 on �

R�(�;  )=0 in �; B�=0 on �

R!(!;  )=0 in �; !=!bc on �

(11)

Then, (11) is solved, at time level (n + 1), by the �xed point iterative process: With
{�0; !0}= {�n; !n} given, solve until convergence on � and !

� m+1=−!m in �;  m+1 =0 on �

�m+1=�m − ��(�I − ��)−1R�(�m;  m+1) in �; B�m+1 =0 on �; ��¿0

!m+1=!m − �!(�I − ��)−1R!(!m;  m+1) in �; !m+1 =!m+1
bc on �; �!¿0

(12)

and then, take (!n+1;  n+1; �n+1)= (!m+1;  m+1; �m+1).
Finally, system (12), with the corresponding {�0; !0}, is equivalent to

� m+1=−!m in �;  m+1 =0 on �

(�I − ��)�m+1=(�I − ��)�m − ��R�(�m;  m+1) in �; ��¿0

B�m+1=0 on �

(�I − ��)!m+1=(�I − ��)!m − �!R!(!m;  m+1) in �; �!¿0

!m+1=!bc on �

(13)

It turns out that three uncoupled, elliptic linear problems associated with the operators �
(or −�), �I−�� and �I−�� are solved; for isothermal problems, only two of such problems
are solved, the ones associated with � (or −�) and �I − ��. It should be noted that the
non-symmetric parts of � and ! have been taken to the right-hand side as part of the iterative
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2D INCOMPRESSIBLE VISCOUS FLOWS 355

process. Therefore, the solution of the original system, at each iteration of each time level,
leads to the solution of standard symmetric linear elliptic problems.
It is well-known that for the spatial discretization of elliptic problems like those in (13),

either �nite di�erences or �nite elements may be used, as far as rectangular domains are con-
cerned; it is also known that in either case very e�cient solvers exist. In the �nite element
case, variational formulations have to be chosen and then restricted to the �nite-dimensional
�nite elements spaces, like for instance those in References [7, 10, 11]. For the speci�c re-
sults in the following section, the second-order approximation of the Fishpack solver [12]
has been used, where the algebraic linear systems are solved through an e�cient cyclic re-
duction iterative method [13]. Then, such second-order approximations in space combined
with the second-order one for the vorticity boundary condition (7); the centred second-order
approximation for @ =@y and @ =@x to get u1 and u2 in (4), and @�=@x, say in (10); the
second-order approximation for the Neumann temperature boundary condition, based on (8);
and the second-order approximation in time (8) imply that the whole approximate problem
relies on second-order discretizations. It is known that if �nite elements are used, all the
second-order spatial discretizations can be obtained with linear �nite elements; a procedure
like the one in Reference [7] is required for (7) to retain second-order accuracy.

4. NUMERICAL RESULTS

As mentioned before, the numerical experiments take place in rectangular domains �= (0; a)×
(0; b), a; b¿0, in connection with the unregularized, driven cavity problem. Then, it is to be
remembered that the boundary condition of the  –! motion is given by  =0 everywhere
on the boundary for  and by (7) for !. The initial condition for ! and � are identically 0.
The Prandtl number Pr appearing in the temperature equation (5c) is kept �xed, Pr=0:72, in
the numerical experiments for mixed convection. The numerical experiments involve in gen-
eral Reynolds numbers 4006Re63000; Grashof numbers 1006Gr6107 in mixed convection
thermal problems, and mainly Re=1000 in isothermal ones. The space steps are denoted by
hx, hy and the time step by �t.
As stated in the Introduction, all the results shown correspond to steady state �ows obtained

from the unsteady problem. They are the converged asymptotic steady state obtained as time
t approaches +∞ (large time, in practice). To reach convergence to an asymptotic steady
state one has to give a stopping criterion for the �nal time Tss when it is reached; that is, Tss

is the time when the solution does not change any longer with respect to time. For mixed
convection problems, which are more di�cult than isothermal ones, Tss is determined mainly
according to the point-wise discrete L∞ absolute criterion, given later on in (15).
In rectangular cavities, the smallest length of the aspect ratio that works for the correspond-

ing case in a square domain gives a guide for the optimal mesh size for the largest length. For
instance, for Re=1000, in a rectangular cavity of aspect ratio 2 the mesh (hx; hy)= (1=120;
2=240) is used since the correct result in the unit square cavity, for isothermal and mixed
convection problems, is obtained on a mesh (hx; hy)= (1=120; 1=120). However, through a
mesh independence study, it will be observed that this rule is more demanding with mesh
re�nement as the aspect ratio increases. For all the results reported, the time step ranges from
�t=0:02 to �t=0:001; it will also be observed that �t has to decrease, due to stability, as
mesh re�nement is demanded by high aspect ratios.
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To support the assumption that the new results are correct, a mesh size and time step
independence studies are made in terms of the point-wise discrete L∞ relative error in the
closure � of the cavity

�t �xed :
‖fhx1;hy1;�t − fhx2;hy2;�t‖∞

‖fhx1;hy1;�t‖∞

{hx; hy} �xed : ‖fhx;hy;�t1 − fhx;hy;�t2‖∞
‖fhx;hy;�t1‖∞

(14)

In connection with this, Iwatsu et al. [14], without mentioning explicitly the metric used (but
in any case, it has to be an equivalent �nite-dimensional one), use only three time steps and
three meshes for their mixed convection results in the square cavity. They claim to obtain
discrepancies less than 1%, and it is not clear if they are computing their measure in all
the cavities as we do. However, for rectangular cavities, things are more di�cult and more
combinations have to be considered. The above metric is also complemented with the max=min
values of the stream function  in �.
It should be clearly understood that to get �ow solutions in rectangular cavities, work was

�rst undertaken to obtain correct solutions in the square cavity. In this regard, the validation for
the isothermal �ow at Re=1000 is given in Reference [1], on a mesh (hx; hy)= (1=120; 1=120)
with �t=0:01; as can be seen, the validation of some thermal �ows is presented in
Section 4.2. During this process, numerical experiments were made to see that coarser meshes
than (hx; hy)= (1=120; 1=120) do not give the correct �ows; in connection with this, Goyon
[9] obtains results on (hx; hy)= (1=128; 1=128). On coarser meshes, the vorticity fails to be
correct. This was also tested with the Re=400 �ow which cannot be obtained on a mesh
coarser than (hx; hy)= (1=80; 1=80). Similar experiments were made for the non-isothermal
problems. In this case, even though coarse mesh solutions for the streamlines and isotherms
may agree with results widely known to be correct, the mesh chosen is the one where the
vorticity (not shown) also agrees with the analogous Reynolds number in the isothermal case,
as mentioned previously.
Based on the above discussion, the mesh independence study for rectangular cavities con-

siders only mesh sizes smaller or equal to the correct ones used for square cavities, otherwise
an evident error may be accumulated.

4.1. Isothermal �ows

Figures 1 and 2 show the �ows for Reynolds number Re=1000 with aspect ratios 2 and
3 on meshes (hx; hy)= (1=120; 2=240), with �t=0:01, and (hx; hy)= (1=320; 3=960), with
�t=0:0025, respectively. The left contours are the streamlines and the right ones the vortic-
ity contours. The result of Figure 1 agrees very well with the one shown by Goyon [9], on
a mesh (hx; hy)= (1=128; 2=256) and time step �t=0:005, using a di�erent method; Goyon
does not show a result with aspect ratio 3. The contour values are the ones used by Goyon
in its aspect ratio 2 result, which in turn are the same in Reference [15] in the square cavity.
To validate the aspect ratio 3 result, computations were made with a set of 4 mesh sizes

and di�erent time steps:

(1) mesh size �xed, (hx; hy)= (1=160; 3=480), {�t}= {0:01; 0:005; 0:0025};
(2) time step �xed, �t=0:005, {(hx; hy)}= {(1=160; 3=480); (1=240; 3=720)};
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(a) (b)

Figure 1. Re=1000; A. ratio 2: hx=1=120, hy=2=240: (a) Streamlines; and (b) vorticity contours.

(a) (b)

Figure 2. Re=1000; A. ratio 3: hx=1=320, hy=3=960: (a) Streamlines; and (b) vorticity contours.

(3) a combination of mesh sizes and time steps, (hx; hy)= (1=240; 3=720) with �t=0:005,
(hx; hy)= (1=320; 3=960) with �t=0:0025, and (hx; hy)= (1=440; 3=1320) with �t
=0:00125 (due to stability).

The discrepancies for each set of computations are:

(1) of microscopic order (at most 4× 10−7%);
(2) at most 8% (0.9% for the stream function and 8% for vorticity);
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(3) at most 9% (0.5% for the stream function and 9% for vorticity, the maximums occur-
ring in the farthest, in size, meshes and time steps; for the close ones, the maximum
is 5% for the vorticity).

Incidentally, the result with (hx; hy)= (1=440; 3=1320) and �t=0:00125 mentioned in (3) was
also computed with �t=0:001 giving a discrepancy like the one obtained in (1).
The max=min values of the stream function  (in all the cavity �) for cases (1) and (3)

are displayed as follows ((2) is included in these two cases):

(1) max=min =0:0133= − 0:1178 (the same for all the �t’s);
(3a) (hx; hy)= (1=240; 3=720) with �t=0:005, max=min =0:0135= − 0:1189,
(3b) (hx; hy)= (1=320; 3=960) with �t=0:0025, max=min =0:0135= − 0:1192,
(3c) (hx; hy)= (1=440; 3=1320) with �t=0:00125, max=min =0:0136= − 0:1195.
Therefore, the results shown in Figure 2 are chosen as the correct ones, which agrees with

the one shown by (hx; hy)= (1=440; 3=1320) and �t=0:00125. It is observed that the number
of circles, 9, of the streamlines in the upper cell is very close to the Goyon [9] aspect ratio
2 result, 8 circles; because of the di�erence in aspect ratio, in such a Goyon result the third
lower cell does not appear.
It is straightforward to verify the above study for the easier aspect ratio 2 result. Ac-

tually, computations were made on meshes (hx; hy)= (1=240; 2=480), with �t=0:005, and
(hx; hy)= (1=320; 2=640), with �t=0:0025. The corresponding �ows show 9 circles in the
upper cell of the streamlines instead of 8, a in Figure 1; that is, a small circle appears in
the centre of the cell; everything else looks the same, including the vorticity contours. How-
ever, the one on (hx; hy)= (1=120; 2=240) and �t=0:01 is shown in Figure 1 to compare its
agreement with Goyon’s result on a mesh (hx; hy)= (1=128; 2=256) (it also shows 8 circles in
such cell).
It should be noted the increase in the correct meshes from the aspect ratio 2 result to

the aspect ratio 3 case (from (hx; hy)= (1=120; 2=240) to (hx; hy)= (1=320; 3=960)). Therefore,
this and the stability constraint on the time step impose a serious limitation on computing
resources either for higher aspect ratios or higher Reynolds numbers, at least under the current
form of the numerical scheme.

4.2. Mixed convection thermal �ows

The boundary condition for the temperature (given implicitly on the operator B, say in (12))
is given by

@�
@n
=0 on �|x= 0; a; �= �0 ≡ 0 on �|y= 0; �= �1 ≡ 1 on �|y= b

which means that the top wall is maintained at a higher temperature than the bottom wall
and the lateral walls are insulated. Then, the �uid motion is caused by buoyancy from the
vertical temperature gradient and by the velocity-driven cavity boundary condition on the top
horizontal boundary wall.
Figures 3 and 4 show the �ows for Reynolds number Re=1000 and Grashof numbers

Gr=102 and Gr=106 in the unit square cavity on a mesh (hx; hy)= (1=120; 1=120), both
with �t=0:01; the streamlines on the left are obtained with the contour values given by
Ghia et al. [15] whereas the isotherms on the right are ‘default’ ones. Both results agree

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:349–366



2D INCOMPRESSIBLE VISCOUS FLOWS 359

(a) (b)

Figure 3. Re=1000, Gr=102; hx=1=120= hy: (a) Streamlines; and (b) vorticity contours.

(a) (b)

Figure 4. Re=1000, Gr=106; hx=1=120= hy: (a) Streamlines; and (b) isotherms.

with those in Reference [6]; they in turn were validated with the ones in Reference [14]. The
validation from this work is reinforced by showing in Figure 5 the pro�les of the horizontal
U and vertical V component of the velocity at x=0:5 (left) and y=0:5 (right), respectively,
for Gr=106 �xed and Re=400, 1000, 3000, with their min–max values given in Table I. All
show good agreement with those reported by Iwatsu, Table II. The case Re=100 (considered
in Iwatsu) is skipped since it is a less di�cult solution.
Figures 6 and 7 show the �ows for Reynolds number Re=1000 and Grashof number

Gr=106 with aspect ratios 2 and 3 on meshes (hx; hy)= (1=120; 2=240) and (hx; hy)= (1=120;
3=360), respectively, with �t=0:01; the streamlines, on the left, and the isotherms, on the
right, are also obtained with the values mentioned for Figures 3 and 4.
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(a) (b)

Figure 5. Gr=106: (1) Re=400, (2) Re=1000, (3) Re=3000.

Table I. Gr=106: (1) Re=400, (2) Re=1000,
(3) Re=3000.

Velocity pro�les Umin, Umax Vmin, Vmax

(1) −0:2629, 0.9931 −0:0023, 0.0071
(2) −0:1742, 0.9981 −0:0912, 0.0979
(3) −0:3809, 0.9991 −0:5179, 0.3762

Table II. Iwatsu’s results.

Velocity pro�les Umin, Umax Vmin, Vmax

(1) −0:26322627, 1.000000 −0:000897862948, 0.0072308369
(2) −0:17038333, 1.000000 −0:0877381563, 0.0969309211
(3) −0:40658975, 1.000000 −0:54972339, 0.40160173

To validate the aspect ratio 2 result, computations were made for a �xed mesh size and
various time steps and vice versa:

(1) mesh size �xed, (hx; hy)= (1=120; 2=240) and {�t}= {0:02; 0:01; 0:005};
(2) time step �xed, �t=0:005 and {(hx; hy)}= {(1=120; 2=240); (1=160; 2=320); (1=240;

2=480)};
(3) a combination of time step and mesh size,
(3a) �t=0:005 with (hx; hy)= (1=240; 2=480) and �t = 0:0025 (due to stability) with

(hx; hy) = (1=320; 2=640),
(3b) �t=0:01 with (hx; hy)= (1=120; 2=240) and �t=0:0025 with (hx; hy)= (1=320; 2=640).
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(a) (b)

Figure 6. Re=1000, Gr=106; A. ratio 2: hx=1=120, hy=2=240: (a) Streamlines; and (b) isotherms.

(a) (b)

Figure 7. Re=1000, Gr=106; A. ratio 3: hx=1=120, hy=3=360: (a) Streamlines; and (b) isotherms.
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Table III. Steady state times for mixed convection �ows.

Gr A. ratio Tss

(1) Gr=102 1 107.65
(2) Gr=106 1 372.97
(3) Gr=106 2 1097.09
(4) Gr=106 3 1511.41
(5) Gr=107 1 430.26

The discrepancies from the above experiments are:

(1) at most 1.4% (this maximum occurs in the stream function for �t=0:005 and
�t=0:01, the rest are less than 1%);

(2) at most 5% (5% for the stream function and 1% for temperature, these maximums
occurring in the two farthest meshes);

(3a) at most 0.8% (0.8% for the stream function and 0.7% for temperature),
(3b) at most 3% (3% for the stream function and 0.6% for temperature).

It should be noted that in (3) the discrepancies are congruent with the mesh size.
The max=min values of the stream function  for (1)–(3) are:

(1) max=min =0:0027 (same for all the �t’s)/−0:1069, −0:1067, −0:1066, respectively;
(2) �t=0:005 with {(hx; hy)}= {(1=120; 2=240); (1=160; 2=320); (1=240,2=480)}, max=min

=0:0027 (same for all the meshes)/−0:1066, −0:01083, −0:1095, respectively;
(3) only �t=0:0025 with (hx; hy)= (1=320; 2=640) since it can be compared with the

previous ones in (1) and (2), max=min =0:0027= − 0:1097.
Then, because of the above minimal errors and since no changes are observed in �gures

with �ner meshes, the �ow shown in Figure 6, with (hx; hy)= (1=120; 2=240) and �t=0:01, is
taken as the correct one. As will be pointed out later, a thermal �ow is more dynamic; hence
it is notable that this result is obtained with a mesh that is analogous to one that works in the
square cavity, Figure 4, that is, it happens something like in the isothermal case, Figure 1.
Concerning the aspect ratio 3 result shown in Figure 7, with (hx; hy)= (1=120; 3=360) and

�t=0:01, another computation was made with (hx; hy)= (1=240; 3=720) and �t=0:005; the
discrepancy between them is at most 3% (3% in the stream function and 0.2% in the tempera-
ture) and the �gures look the same. Moreover, for the stream function the max=min =0:0025=
− 0:1134 in both cases. At this stage, this result has to be taken as a preliminary one since
more computing experiments need to be done to see if, for instance, some change in the
streamlines like in the isothermal Re=1000 aspect ratio 3 result, Figure 2, may occur. Unlike
such an isothermal result, where the �nal time to reach the steady state is no more than
Tss=200, the corresponding time for this thermal result is beyond Tss=1000 as shown in
Table III and the discussion in Section 4.3. Hence, for �ner meshes, and its time step restric-
tion due to stability, considerable computing time is required.
Finally, Figure 8 shows the �ow for Reynolds number Re=1000 and Grashof number

Gr=107 in the unit driven cavity on a mesh hx=1=120× 1=120= hy: streamlines on the left
and isotherms on the right with contour values like before. For this �ow, experiments were
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(a) (b)

Figure 8. Re=1000, Gr=107; hx=1=120= hy: (a) Streamlines; and (b) isotherms.

computed as follows:

(1) �xed mesh size (hx; hy)= (1=120; 1=120), {�t}= {0:02; 0:01; 0:005};
(2) a combination of three time steps and three mesh sizes,
(2a) �t=0:01 with (hx; hy)= (1=120; 1=120) and �t=0:005 with (hx; hy)= (1=240; 1=240),
(2b) �t=0:01 with (hx; hy)= (1=120; 1=120) and �t=0:00125 (due to stability) with

(hx; hy)= (1=480; 1=480),
(2c) �t=0:005 with (hx; hy)= (1=240; 1=240) and �t=0:00125 with (hx; hy)= (1=480;

1=480).

The discrepancies are:

(1) at most 0.2% (0.2% for the stream function and 0.15% for temperature, these maxi-
mums occurring for the two farthest �t’s, the rest are almost of microscopic order);

(2a) at most of 3% (3% for stream function and 0.6% for temperature), almost the same
occurs if �t=0:01 is replaced by �t=0:005 in the coarser mesh,

(2b) at most 3% (3% for stream function and 0.3% for temperature),
(2c) at most 0.5% (0.3% for stream function and 0.5% for temperature).

On the other hand, the max=min values of the stream function  in each case are:

(1) max=min =0:0057=0:0388 (the same for all the �t’s);
(2c) max=min =0:0058=0:040 (the same for both meshes). It should be noted that

(2a)–(2b) are combinations of (1) and (2c).

Then, in terms of the above discrepancies and since no changes are observed in �gures
with �ner meshes, the �ow shown in Figure 8, with (hx; hy)= (1=120; 1=120) and �t=0:01,
is taken as the correct one.
Table III shows the �nal time Tss where the asymptotic steady state is reached for mixed

convection problems according to the point-wise discrete L∞ absolute criterion in �

! : ‖!n+1
hx;hy − !n

hx;hy‖∞; � : ‖�n+1
hx;hy − �n

hx;hy‖∞ (15)
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with tolerance 10−5. The Reynolds number Re=1000 is �xed and the Grashof number Gr
varies according to the �ows in Figures 3, 4, 6–8.

Remark
The numerical experiments used for mesh size and time-step independence studies, based on
(14), show that Tss has some dependence on the time step and the mesh size: it decreases
as either the time step or the mesh size decreases. To see if this may depend on the speci�c
choice (15), experiments were also made with the discrete L2(�) norm and a similar pattern is
observed. Moreover, computations were made using the small Tss for two analogous situations
and (14) discrepancies on  and � were computed: they are at most 5%; actually, for the
same mesh and di�erent time steps the di�erences are of microscopic order. Therefore, since
the mesh size and time-step independence studies lead us to �gure out the optimal mesh size
and time step that give the correct results, it is reasonable to choose Tss as the one occurring
in such situations, which is shown in Table III in connection with Figures 3, 4, 6–8.

4.3. Some discussion on the results and the numerical procedure

About the new �ows (Figures 2, 6–8), which to the best of our knowledge are reported for
the �rst time, some speci�c facts can be pointed out. The number of cells for streamlines
in the square cavity for mixed convection �ows increases as the Grashof number grows:
with Re=1000 �xed, Figure 4, Gr=106 has more cells than the one in Figure 3, Gr=100,
and less than the new one in Figure 8, Gr=107; in rectangular cavities, this number of
cells is also bigger than the one for isothermal �ows, as can be seen comparing Figures
6 and 7 with Figures 1 and 2. From Table III it can be observed that the thermal �ow
needs more time to reach its asymptotic steady state Tss as the aspect ratio or the Grashof
number grows. Comparing the meshes for the results in Figures 3, 4, and 8 (square cavity)
with the ones in Figures 2, 6, and 7, it follows that for high aspect ratios the mesh must
be re�ned.
For the isothermal results of aspect ratio 2 and 3, the �nal time Tss where the steady state

is reached was determined in a di�erent way: when the �ow does not change any more. As
in the thermal case, this time Tss increases as the aspect ratio grows, but for the biggest
aspect ratio considered here (3, with Re=1000) this time is not greater than 200, then it is
far smaller than the thermal cases; this and the bigger number of cells in the streamlines,
discussed just above, may be seen as a result of mixed convection �ows being more dynamic
due to the double motion e�ect of their boundary condition, which is commented on after the
� boundary condition in (4.2).
At �rst it was supposed that, with this numerical scheme, it was going to be possible to

resolve �ows at high aspect ratios with an appropriate mesh, just taking as a guide the one
that works in the square cavity. The mesh independence study leads one to conclude that
this is not the case; �ner meshes have to be used, which in turn gives rise to restrictions
on the time step due to stability. The number of iterations at each time step starts at about
20–15 but it promptly decreases to 2–3, even 1, long before steady state is reached; this
latter behaviour deteriorates when the time step starts to lose stability; at worst, it blows up
immediately. It has also been observed, at least for isothermal �ows in the square cavity, that
such restrictions on the time step also appear for high Reynolds numbers once a �ne mesh
is used due to boundary layer e�ects. No systematic study has been carried out to see how
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this trend is a�ected for di�erent values of the parameter � in the iterative process. A value
of �=0:7 has been working e�ectively.
Moreover, to pass the non-symmetric (and non-linear due to the coupling through the

velocity with vorticity and temperature) convection part of the elliptic operators to the right-
hand side can be seen as an advantage of the iterative procedure. This process decouples
equations and relies on linear problems. Keeping these forms on the left, an advantage could
be to avoid iterations treating the non-linear convection terms as a linear extrapolation of
the two preceding time values. This approach follows recent works in primitive variables,
where the boundary condition is speci�ed, for instance References [16, 17]. However, in the
context of the 2D stream function–vorticity formulation, iterations are necessary to construct
the boundary condition for vorticity in terms of unknown values of the stream function, (7)
and (12)–(13).

5. CONCLUSIONS

2D isothermal/non-isothermal incompressible viscous �ows in rectangular domains with var-
ious aspect ratios, in connection with the unregularized, driven cavity problem, have been
presented. Results are shown for Reynolds number Re=1000 in isothermal problems and
for Reynolds number 4006Re61000 and Grashof numbers 1026Gr6107 in mixed convec-
tion. The results are obtained with a simple numerical scheme based mainly on a �xed point
iterative process to solve the non-linear elliptic systems that result after time discretization
on the time-dependent Boussinesq and Navier–Stokes equations in stream function–vorticity
variables. The numerical procedure leads to the solution of well-conditioned symmetric linear
elliptic problems. With its simplicity, the procedure allows solutions to be obtained for �ows,
all of which reach their asymptotic steady state. From these results, regarding the mesh size
and time step (a warning of it is given by the aspect ratio 3 result in Figure 2), it can be
concluded that a study of �ows at higher aspect ratios as well as of time-dependent �ows at
high Reynolds numbers (supposed to be so in connection with the square cavity for Reynolds
numbers ¿7500) could be unreachable, unless some additional improvement is made on the
numerical scheme or through the use of more powerful computers.
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